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1 Abstract

The nonlinear dynamics of chaotic circuits generate a rich spectrum of sig-
nals. This observation suggests that these circuits could potentially provide an
implementation of a novel framework of computation. In support of this hy-
pothesis, computational complexity of the nervous system is achieved in large
part through the nonlinear elements of electrically excitable membranes. In
this study, we characterize the structure of the integral periodic components of
signals generated by the chaotic inductor-diode (LD) circuit using a novel peri-
odic decomposition. Specifically, we show that simple sinusoidal inputs, when
passed through the LD circuit, can be used to store discrete, multiplexed pe-
riodic information. Further research could reveal principles of a periodic form
of computation that can be implemented on simple dynamical systems with
qualitatively complex behaviors. It is our hope that insights into the biological
organizing principles of the nervous system will emerge from a precise, compu-
tational understanding of complex nonlinear systems such as the LD circuit.

2 Introduction

A dynamical system is abstractly defined as a series of coupled differential equa-
tions, which usually take some unspecified function as an input. The full char-
acterization of a system can be thought of as the set of all possible trajectories
in phase space over all possible inputs and initial conditions. Phase space is the
vector function that relates the multiple variables of the system to their deriva-
tives (Izhikevich, 2007 ). Dynamical systems that are not explicitly dependent
on time are referred to as autonomous systems. Systems of interest are gener-
ally autonomous, and contain at least one fixed point that the system tends to,
when given the null input (usually the zero function). In this case, the system
is referred to as resettable (Gold, 1972 ).

Dynamical systems are often described with respect to the period (or lack
thereof) of their trajectories in phase space, which result from a certain, usually
periodic, inputs. In some cases, one particular variable of the system is causal,
in a physical sense. This variable is then taken to be the output variable of the

1



system. In the systems that describe the dynamics of the various neurons of the
nervous system, voltage is taken to be the causal output variable of the system.

Given a periodic input, a system will usually tend to a limit cycle; a periodic
trajectory through phase space that is of fixed length. Dynamical systems with
dimension greater than two are, in general, capable of following aperiodic tra-
jectories, even when given an input that is itself periodic. The systems that are
capable of generating this kind of aperiodic behavior are referred to as chaotic
systems. Understanding the various routes to chaos is one of the major goals of
the relatively young field called chaos theory. Several routes to chaos have been
identified, the most famous of which is the period-doubling route to chaos that
is seen in dynamical systems with both discrete and continuous application of
a non-invertible mapping function (Feigenbaum, 1978 ).

In this study, we approach the chaotic system in a novel way, using a computa-
tional perspective. There is a rich and well-established field of academic inquiry
called computability theory, which is part of a more general field called recursion
theory. Recursion theory is concerned with the dynamics of discrete, recursively
defined functions, which include, but are not limited to, symbolic systems of
logical inference and computational systems. The field takes its roots from the
pioneering work of of Kurt Godel and David Hilbert, which concerned the com-
pleteness of number theory (arithmetic) as expressed in the inferential language
of first-order logic (Smullyan, 1994). It is noteworthy that Godel’s work is as
relevant today as it was a century ago.

The earliest results in computability theory were first pioneered by Alan Turing,
Alonzo Church and Stephen Kleene, among others. Their aims were to define
precisely what computation is and to prove precisely what its limitations are.
Computability theory is concerned with discrete systems, generally referred to
as machines, following Turing’s formalism. Through the lens of an interpreter,
a machine can be capable of generating all the patterns that can be generated
by some simplier machine, as well as having the capacity to generate other ad-
ditional patterns. The powerful machine is said to have a higher computational
complexity. There are machines that can generate the patterns of every other
machine, and these special machines are referred to as universal computers, or
more recently as just computers (Sipser, 2006). The term computer is collo-
quially used to refer to any physical device that, if given access to an infinite
amount of memory, would then become a universal computer.

There are several significant similarities between chaotic systems and universal
computers, which we use as the basis of our analogy. Computers are understood
in terms of taking in a string of numbers as an input, changing their internal
states in various ways, and then eventually halting (or not). Chaotic systems can
be understood in terms of taking in a periodic input, displaying some transient
behavior and then eventually converging a periodic output (or not). These phe-
nomena are analogous to the computational notions of computation time (the
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transient period) and halting (converging to a periodic trajectory). The period-
icities of the outputs are known to be integer values with respect to the period
of a known periodic input, which is a fact that becomes intuitive after a bit
of thought about trajectories and phase space. In this way, we can resolve a
notion of discreteness with respect to the input. The discreteness of computa-
tional systems is of fundamental importance; it is the backbone underlying all
results concerning isomorphisms between (equivalence of) computational sys-
tems. Discreteness also allows for the notions of computational complexity and
universality to be well-defined.

We proceed in our analysis by characterizing the outputs of the LD circuit over
some small but interesting input space, which consists only of sinusoids of vari-
ous amplitudes and frequencies. The outputs from the system are taken to be the
voltage fluctuations across the varactor. These output signals are decomposed
into integral periodic components using a decomposition of our own design. In
this way, an output is described in a manner that is analogous to a musical
chord. We show that both the periodic components and the frequency ranges
that evoke them contain fundamental aspects of discreteness. This provides a
means of storing information in chaotic circuits and demonstrates implicit dis-
cretization in both the inputs and outputs of at least one chaotic circuit; lending
credibility to our analogy between chaotic systems and universal computers.

3 Experimental Methods

3.1 Circuit Construction

Many types of non-linear circuits that show chaotic behavior have been de-
scribed earlier: some of the most famous are the Linsay circuit (Linsay, 1981 )
and the Chua circuit (Matsumoto, 1984 ). We have implemented a modifica-
tion of the Linsay circuit, chosen for its simplicity, ease of construction and
dynamical complexity.

3.2 The Lindsay Circuit

The original Linsay circuit is a non-linear modification of the classical linear
RLC circuit in which the capacitor is replaced by a non-linear varactor diode.
A varactor diode is a variable capacitor, a circuit component in which the ca-
pacitance of the diode in reverse bias varies with the reverse bias voltage. A
schematic of the Lindsay circuit is presented in Figure 1.

3.3 The LD Circuit

The kernel of our circuit consists of an inductor and a varactor, the same com-
ponents included in the original Linsay circuit. The resistance, inductance and
varactor used are specified below.
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Figure 1: The Lindsay Circuit. The circuit consists of an inductor and a diode
called a varactor, a variable capacitor. The signal space consists of sine waves
of fixed frequency and variable amplitude. The circuit is isolated with a single
operational amplifier, labeled ’Buffer Amplifier’ (Lindsay, 1983).

3.4 Modifications

Any to query the state of any system will necessarily change the state of the
system. Previous attempts to measure voltages along different parts of the
circuit indicated that the voltages measured were dependent on our recording
apparatus. Therefore several OpAmps were included to isolate the circuit and
minimize the influence of experimental variability. The actual circuit is pre-
sented in Figure 2. The specifications of our LD circuit are:

Resistor: 100 Ohms
Inductor: 39 mH
Varactor: IN4004
OpAmp: AD825
Analog I\O: NI PCI-6115

3.5 Choosing Operational Amplifiers

An OpAmp is a DC-coupled, high-gain, electronic voltage amplifier with differ-
ential inputs. Figure 3 shows the schematic of a standard OpAmp. OpAmps
are active components and require an external voltage source to function prop-
erly. The input-output relationship is given by the following formula:
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Figure 2: The LD Circuit. This circuit is similar to the one studied by Paul
Lindsay, though with several more OpAmps, digital signal generation and a
different varactor.

Vout =
{
G(V− − V+) Vs+ and Vs− are sufficient
Vs+ or Vs− Otherwise.

Then

V+ : non− inverting input
V− : inverting input
Vout : output
Vs+\− : positive\negative power supply
G : open− loop gain.

Ideal OpAmps have the following properties:

1. Open loop gain G is infinite. Real OpAmps have finite but extremely
high open loop gain ( 109). OpAmps are rarely used in their open-loop
condition but usually one of many feedback modes the most frequent is
the unity gain mode where the Vout is fed back into V−.

2. Infinite Bandwidth. The input-output relationship holds for non-varying
voltages and typically the gain falls rapidly with increasing frequency.
Bandwidth is defined as that frequency range in which the gain is within
3dB of the maximum gain.

3. Infinite Slew rate. This is again a property of dynamic voltage inputs.
This determines how fast the output voltage approaches the input voltage
for a step change in the input voltage.

4. Infinite input impedance. Higher input impedances lead to lesser input
current leading to lesser perturbation of the kernel.
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Figure 3: The Operational Amplifier. Four identical OpAmps (depicted above)
were used to isolate our inductor-diode (LD) circuit.

3.6 The AD-825 Operational Amplifier

The AD-825 is general-purpose high-speed JFET amplifier having properties
that make it ideal for isolating a circuit that is extremely sensitive to perturba-
tions. Some facts about the AD-825 are available in Figure 4.

Figure 4: Properties of the AD-825 Operational Amplifier.

3.7 Choosing and Sampling the Input Space

We developed a measure of periodic complexity (Analytical Methods), and
used our measure to choose an interesting input space. Once fixed, the input
space was sampled in a variety of ways. For the purposes of this analysis it is fair
to assume that the space was sampled randomly using the uniform distribution.
The amplitude range of our inputs is 5-7 volts, and the frequency range of our
inputs is 5-7 kHz.
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4 Analytical Methods

4.1 Circuit Isolation and Stability

The goal of this section is to develop an analysis of stability that is straightfor-
ward. Though inputs are sampled over a two-dimensional space, for simplicity
we can assume they are indexed by a single number j. Each input was repeated
10 times, and these trials are indexed by k. Let stdk(fjk(t)) be the standard
deviation across trials of the output signal f that was generated by input signal
j at time t. We define the mean error as the average standard deviation across
trials and time:

E(fjk) = 〈stdk(fjk(t))〉t

Two conditions were tested: the LD circuit without the four OpAmps (denoted
C), and the LD circuit with the four OpAmps (denoted A). When EC(fjk) −
EA(fjk) > 0, then we say that the OpAmps served to stabilize the circuit.
Effectively, we are just testing whether the OpAmps serve to reduce variability
in the LD circuit.

4.2 Periodic Complexity

We develop a novel measure of periodic complexity. Our goal in doing this is to
choose an interesting region of the input space in a principled way. We imposed
five intutive constraints on our complexity measure. They can be summarized
as follows: 1 ) the sine function is the simplest periodic function; 2 ) periodic
complexity is invariant to changes in phase; 3 ) periodic complexity is invari-
ant to changes in amplitude; 4 ) periodic complexity is invariant to changes in
height; 5 ) if two signals have non-overlapping sinusoidal components (are peri-
odically independent), the periodic complexity of their product is equal to the
sum of their periodic complexities.

Formally, this requires a definition of periodic independence, the list of our five
constraints, and a function Cp satisfying the constraints. We provide a function
satisfying four of the five constraints, and outline how to veryify the fifth. We
do not provide a proof of uniqueness, nor do we know if our function is unique.
It does have the property of being intuitive and easy to calculate.

Periodic Independence Let ρ1 and ρ2 be two well-behaved functions (bounded
and differentiable everywhere) and let F{ρ} be the Fourier transform of ρ. We
say ρ1 is periodically independent of ρ2, and write ρ1 ⊥ ρ2 iff:

1. |F{ρ1}| > 0→ |F{ρ2}| = 0.

2. |F{ρ2}| > 0→ |F{ρ1}| = 0.
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Periodic Complexity Let ρ, ρ1 and ρ2 be well-behaved functions. A function
Cp is a measure of periodic complexity iff it satisfies the following conditions:

1. ρ(t) = sin(t) → Cp(ρ(t)) = 0.

2. ∀θ ∈ R, Cp(ρ(t)) = Cp(ρ(t+ θ)).

3. ∀a ∈ R, Cp(ρ(t)) = Cp(aρ(t)).

4. ∀b ∈ R, Cp(ρ(t)) = Cp(ρ(t) + b).

5. ρ1 ⊥ ρ2 → Cp(ρ1ρ2) = Cp(ρ1) + Cp(ρ2).

Theorem 4.1 (Periodic Complexity). Let ρ be a discretely measured timeseries,
let F{ρ} be the discrete Fourier transform of ρ, and let H(X) denote Shannon’s
entropy function. Then

Cp(ρ) = H

 |F{ρ}|∑
ω>0

|F{ρ}|


is a measure of periodic complexity. Cp is not defined for the constant function,
which is, in general, only non-zero when ω = 0. Following the standard deriva-
tion of the entropy function (Cover & Thomas, 1996), which an analogous case,
we let Cp(c) = 0 for all c ∈ R.

It is easy to see why Cp satisfies the first four constraints. 1) If the function
is the sine funcion, it’s discrete Fourier transform has only one non-zero com-
ponent. In this case, |F{ρ}|∑

|F{ρ}| is the delta distribution, which has an entropy
of 0; 2) By considering only the amplitudes |F{ρ}|, the measure is invariant
to phase shifts; 3) Normalizing the amplitudes by dividing |F{ρ}| by

∑
|F{ρ}|,

Cp is invariant to uniform changes in amplitude. The formal proof requires the
fact that the Fourier transform is a linear transform; hence F{aρ} = aF{ρ};
4) The DC component is not considered in the measure, making it invariant to
changes in height.

5) The last condition requires the relationship between multiplication in the time
domain and convolution in the frequency domain. We need to prove that the
covolution of periodically independent functions in the frequency domain will
have a complexity that is the sum of the two individual complexities. This may
not be true. Furthermore, the final constrain may not be required for a definition
of periodic complexity. Therefore, our measure of periodic complexity, as well
as our proposed solution, are both works in progress. Even so, our measure is
sufficient for the purposes of this experiment.
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4.3 The Hilbert Factorization

The Hilbert factorization is a method of factorizing a well-behaved signal or
time-series into phase and amplitude components, based on the following simple
identity:

f = Re{f + ig}
= Re{a eiφ}
= Re{a cos(φ) + ia sin(φ)}
= a cos(φ).

Choosing g = H{f} has many analytically favorable properties. In this case,
the time series a is called the analytic amplitude of f and φ is called the analytic
phase of f . This will help us define the driving frequency of an output signal,
which we show to be identical to the input frequency in all but a negligible
number of cases in our input space (see Results). For more on the Hilbert
transform see (Johansson, 1998).

4.4 Sinusoidal Normalization

We define a sinusoidal normalization as an invertible mapping of any well-
behaved function to a function that is more sinusoidal. Specifically, the map-
ping projects f to the range [-1 1], and f can be reordered into the monotonic
portion of the sine function. This will be made formal below.

The motivation behind the normalization procedure is to make our periodic
decomposition general to signals that are all-positive or all-negative, as well
as allowing our decomposition to be recursive. Recursivity is pivotal for inter-
preting signals in the context of computation, though is less significant to the
results of this paper. In fact, insofar as this work is concerned, the sinusoidal
normalization has approximately no impact on our results; we are analyzing
signals which are already centered on the horizontal axis, and we do not include
a characterization of the recursive components of our decomposition. Even so,
it is worth mentioning for the sake of completeness.

The normalization function σ−1 is chosen to extend the analogy that links the
relation between cosine and sine to the relation between a function and its
hilbert transform. We start with the well know trigonometric identity:

cos2(t) + sin2(t)− 1 = 0.

We then ask for an invertible function σ−1 that minimizes the following equation
for an arbitrary, well-behaved function f :

σ−1(f)2 +H{σ−1(f)}2 − 1.
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The analogy between the two equations is straightforward if one thinks of σ−1(f)
as analogous to the cosine function, and H{s−1(f)} as analogous to the sine
function. Then

f = σ(σ−1(f)).

We refer to σ−1(f) as the sinusoidal normalization of f . If f is a discrete time-
series, we conjecture that 1) sorting the values of f ; 2) mapping them one-to-one
onto the values of the series between [sin(-pi/2) sin(pi/2)], and then 3) reording
those new values back to their original configuration satisfies the minimization
stated above. Solving this problem in the continuous case, as well as verifying
our solution in the discrete case would most likely be difficult. Even without a
formal solution, our inverible mapping does allow our decomposition to both be
general and recursive, which serves our purposes. This is done at the expense
of analytical rigor.

4.5 The Periodic Decomposition

The goal of our periodic decomposition is to take apart the output signal into
a series of integral periodic components with respect to to driving frequency,
which tends to be the frequency of the input (Figure 8).

The decomposition is multiplicative. While this was originally started for intu-
itive reasons, one should note that the period-doubling-like behavior observed
in Paul Lindsay’s original paper looks very similar to the successive power spec-
tra that one gets when multiplying a series of coprime sinusoids (Figure 5).
Here, one can see period doubling, as well as higher-order phenomena that are
qualitatively similar to those observed in the powerspectra of signals from con-
tinuous chaotic systems. In light of this similarity, we derive a multiplicative
decomposition of a signal into integral periodic components.

The first step of the decomposition makes use of the sinusoidal normalization.
Let f denote an arbitrary, well-behaved, time-varing output function; a voltage
signal across the varactor.

ft = σ(σ−1(ft)).

This follows immediately from the fact that the sinusoidal normalization func-
tion was chosen to be invertible. Let f ′t = σ−1(ft). Then

ft = σ(f ′t).

The normalized function f ′ can then be decomposed using the hilbert factor-
ization.

ft = σ(αt cos(φ′t)).
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Figure 5: Spectra of the successive multiplication of sinusoids of increasing peri-
odicity. The three figures are different scales, but contain spectra from identical
data. Product of the kth prime period is on the horizontal axis, frequency is on
the vertical axis, and power is on the color axis; black denotes high values and
white denotes low values.

A driving periodicity ro can be extracted through polynomial fitting, so that φt
can be represented in the following way:

ft = σ(αt cos(
φt
ro

)),

where φ′t = φt
ro

. φt is a function of phase, and can be unwrapped. In fact,
the unwrapping procedure has already been done implicitly to extracting the
driving periodicity. The unwrapped function will be nearly monotonic, and
for the purposes of this derivation (and succictness), we will assume that it is
monotonic. Let τt = φt in order to emphasize that we are using an unwrapped,
monotonic phase variable as a variable that represents relative time. α can then
be stretched appropriately to be a function of τ . Therefore, we now have

ft = σ(ατ cos(
τ

ro
)).

With respect to τ , the cosine term is now a perfect sinusoid with period ro.
The rest of the decomposition concerns α, so we flip the equation around for
convenience using the commutivity of multiplication:

ft = σ(cos(
τ

ro
)ατ ).

α is an all-positive function, and due to the sinusoidal normalization, it hap-
pens to be in the range (0 2). Therefore, log2(α) is a function that crosses zero.
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Noting that α = 2log2(α), we write

ft = σ(cos(
τ

ro
) 2log2(ατ )).

The next step is the trickiest and, perhaps, the most arbitrary. It is best de-
scribed informally: i) first the power spectra of log2(α) is computed; ii) the
spectra is then parsed by local minima; iii) the center of mass of each amplitude
is used to assign each partition to the closest period n ro; and iv) the inverse
transform of all partitions is taken. The signal corresponding to integral period
n ro is denoted αn. All unassigned, residual partitions are grouped into a single
term αr. We can then write

log2(α) =
N∑
n=1

αn + αr,

where N comes from the signal resolution. Let R = 2αr . Using the fact that
2a+b = 2a 2b, we can write our signal as

ft = σ((cos(
τ

ro
)
N∏
n=1

2αn)R).

The residual R is subject to recursive refactorization, but this is not included
in our analysis. In general, R was found to be small, as almost all of the signal
complexity is contained in periodic components with longer wavelengths than
the driving periodicity. Each αn is then factorized using the Hilbert factoriza-
tion, to give αn = βn cos(φn). Therefore

ft = σ((cos(
τ

ro
)
N∏
n=1

2βn cos(φn))R) =

ft = σ((cos(
τ

ro
)
N∏
n=1

(2cos(φn))βn)R).

cos(φn) was then correlated with a sinusoid of the form cos( τ
n ro

+ θ) (using
complex exponential multiplication). The Hilbert factorization of f , the values
αn and the correlation results can be seen in Figure 6.

We describe cos(φn) in the following way:

cos(φn) = an cos(
τ

n ro
) +Rn.
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Figure 6: The Periodic Decomposition. (Top) A single output signal, with the
amplitude (red) and phase (blue) components of the Hilbert factorization. The
red and blue signals multiply to the original output. (Middle) The components
of one step of the periodic decomposition of the amplitude component. (Bottom)
The correlation of each component with the appropriate integral periodicity. The
red line represents ε, the cutoff parameter.
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Again, this decomposition can be done using multiplication with a complex ex-
ponential of the appropriate period. We let all terms 2βnRn be absorbed by the
multiplicative residual term R. Finally, we let

sτ = cos(
τ

ro
) , and ρnτ = 2an cos( τ

n ro
)

giving

ft = σ((sτ
N∏
n=1

ρ βnτ
nτ )R)

as the final form of our decomposition. Each ρnτ has an associated amplitude
which, if below some threshold value ε, is excluded from the analysis.

It is noteworthy that this decomposition has a form that is similar to the prime
factorizaton of an integer. If z is an integer, s = sign(z), bk are natural num-
bers, and pk is the kth prime, then there exist bk such that

z = s
∏
k

p bkk .

This is one way of stating the fundamental theorem of arithmetic. This theo-
rem has played a pivotal role in the development of the theory of computation;
it is the substrate for Godel numbering, which was one of two pivotal insights
required for Godel to prove his first and second incompleteness theorems. His
methodology, rather than his results, are considered to be the first example of
programming through arithmetic relations (Leary, 2000). This work has been
followed up by others to solve important problems concerning the solutions of
diophantine equations (Chaitin, 1987). Additionally, Godel’s work provided
Alan Turing with the inspiration to imagine the capabilities of his most highly-
esteemed contraptions, which have since come to bear his name - Turing ma-
chines (Goldstein, 2006).

5 Results

5.1 Stability Analysis

The stability analysis confirmed that the OpAmps served to reduce the overall
variability of the output voltages from the LD circuit (Figure 7). In the major-
ity of cases, the outputs were more stable. There were also a significant number
of cases where the variability remained unchanged. In a very small number of
cases the outputs actually became more variable. Therefore, while the OpAmps
do seem to help, the complexity of the changes they induce suggests that their
inclusion may create a qualitatively different circuit.
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Figure 7: Stability analysis for the LD circuit. The histogram shows the dif-
ference in output variability between the LD circuit with and without the four
OpAmps.

5.2 Properties of the Hilbert Factorization

One step in our periodic decomposition involves separating the signal into am-
plitude and phase components. We found that the phase component can be
used to resolve the input frequency in the absence of prior knowledge (Figure
7). This holds true in all but a small minority of cases (> 100 of the 11, 750
signals analyzed).

5.3 Characterizing the Input Space

Given the qualitatively vast complexity of outputs, choosing an input space to
study is somewhat arbitrary. We chose a space containing output signals which
covered the full spectrum of periodic complexity. When viewed as a function
of input amplitude, the periodic complexity of the signals is approximately
randomly distributed. When viewed as a function of input frequency, there
is well-defined structure, albeit intricate and unintuitive. Looking only at the
periodic component with the maximal amplitude, one finds that there are four
obvious scales of periodicity. They vary much more regularly with respect to
input frequency than with respect to input amplitude (Figure 8).
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Figure 8: Recovering the Input Frequency. The frequencies of the input sinusoids
are plotted on the horizontal axis. The driving frequencies approximated using
the Hilbert factorization are plotted on the vertical axis. 11,750 input/output
pairs were used in this analysis.

5.4 Periodic Discretization

The most interesting finding that came out of our exploratory characterization
of the LD circuit is that non-overlapping (discrete), input frequency intervals
evoke output signals with successive, discrete, periodic components (Figure
10). In other words, there is a natural input/output discretization in the LD
circuit. This is certainly a desirable property for constructing a computational
system, and supports our hypothesis that the principles of computation can be
used to characterize complex systems including those like our LD circuit, which
exhibit chaotic behavior.

Although discrete structure is clearly present in periodic components 23-28,
there is still quite a bit of additional complexity across the input space. We
are sampling a regime with a large number of periodic components, and for all
intensive purposes, these outputs can be considered chaotic. While this may not
actually be the case, the periodicity of the output signal is far far greater than
the time over which we sampled the data; the period of a function is multiplica-
tively related to the periods of its individual components. Due to the observed
complexity, regularity is only observed on average over an input range. Locally,
quite a bit more complexity and discretization is apparent.

For instance, we observe striped patterns in each periodic component when
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Figure 9: Characterizing the input space. (Top) The periodic complexity of the
outputs, plotted against input frequency and input amplitude. (Bottom) The
largest integral periodic component, based on the periodic decomposition, plotted
against input frequency and input amplitude.
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Figure 10: Periodic Discretization. The series of panels represent the ampli-
tudes of successive periodic components. Each panel shows the amplitude of the
periodic component (black, high; while, low) across the entire input space. Input
frequency is on the horizontal axis, input amplitude is on the vertical axis.
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viewed across the input space (Figure 10). While this may be attributed to
either our interpollation method, or to the resolution of our data acquisition
system, it is unlikely. In the first case, interpollation is a triagular procedure,
and would be unlikely to produce stripes given that they are not explicitly sup-
ported by the distribution of the data. In the second case, input resolution
would only serve to add redundancy to the inputs, and one would expect to see
more regularity than might actually exist as a result of this redundancy. There-
fore, the observed complexity may be a natural aspect of the system. If this
is the case, our discrete regimes have further discretization embedded within
them. This could serve to drastically increase the memory-storage capacity of
the circuit.

Figure 11: Periodic Discretization across input frequency. Periodic amplitudes
are averaged across input amplitudes for each input frequency. Input frequency
is on the horizontal axis, and the integral periodic component is on the vertical
axis. Red lines mark the approximate input boundaries of the discrete periodic
components.

Our second observation is that more than one discrete input/output band exists
Figure 11. Our data show three bands, though the third is more probabilistic
than the other two and is omitted for the sake of clarity. Regions shaded in grey
represent integral periodicities with no apparent relationship to the input fre-
quency. These too are omitted for the sake of clarity. The existence of multiple
discrete output bands suggest that even in the case of simple sinusoidal inputs,
the system is capable of generating discrete outputs with combinatorial com-
plexity, as represented by the red bands. Each unique band represents a chord
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that can be distinguished from other output chords generated by different input
intervals.

It is worth mentioning the fact that our input space consists only of sinusoids,
oscillating at 3-5 kHz with amplitudes between 3-5 Volts. With respect to the
space of all possible periodic functions, all reasonable input frequencies, and all
reasonable input amplitudes, this space is extremely small; in fact virtually neg-
ligable. The number of discrete, combinatorial, periodic phenomena that can
be generated by the LD circuit is potentially vast. We conjecure that through
the appropriate combination of periodic inputs, one can uncover alegraic rela-
tionships between the periodic components which could be used to model such
operations as set union and intersection. These operations would constitute
the basis for constructing computational systems, in much the same way that
boolean logic is used to construct computational systems using transistors.

6 Discussion

6.1 Frequency rather than Amplitude

Paul Lindsay’s analysis of the inductor-varactor circuit revealed the period dou-
bling route to chaos in a simple continuous-time system (Lindsay, 1981). Results
concerning the period-doubling route to chaos in iterated, non-monotonic maps
was pioneered and popularized by the seminal work of Mitchel Feigenbaum in
the late seventies (Feigenbaum, 1978). In both of these systems, amplitude
was the relevant variable that could be modulated to produce chaos. In Feigen-
baum’s work, the relevant variable was the height of a concave mapping function,
whereas in Lindsay’s work the relevant variable was the amplitude of the input
sinusoid.

In contrast, we studied a low-frequency input space, chosen for its rich variation
in periodic complexity. Surprisingly, the structured variation in periodic com-
plexity was a function of the input frequency. With respect to amplitude, pe-
riodic complexity varied randomly, with a nearly uniform distribution (Figure
9). Because we characterize our output signals with respect to their driving fre-
quency, which happens to be the input frequency, integral periodic components
evoked by two different frequencies do not, themselves, correspond to the same
periodicity. This is a fundamental difference between our analysis and those
performed by Feigenbaum and Lindsay.

There is a good reason to normalize signals with respect to the input frequency.
Should a signal converge to a periodic output, that output will have a period
with an integral number with respect to the input period. Even so, were we to
consider periodicity with respect to a fixed wavelength, it is possible that the
various bands that we are observing actually represent the same output period.
While this result would appear to challenge our conclusion, in fact it does not.
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If upon varying the input frequency, one finds a periodic output component
that remains fixed, then one has simply discovered another way in which the
output of the system is discrete with respect to the continuous input. Either
way, discretization plays a pivotal role in the interpretation of our results.

6.2 Exposing Discretization and Ignoring Chaos

Our analogy between computational systems and dynamical systems rests on
the notion that a periodic output corresponds to a computer program that even-
tually halts. In the theory of computation, non-halting functions serve only as
a means of characterizing the computational complexity of a system. This con-
cept is epitomized in Turing’s famous halting problem, whereby he proves that
it is, in general, impossible to know whether a given system will halt without
explicitly running it and waiting to see if it does. Past that, programs that do
not halt are, in almost every respect, useless. A counter example to this would
be an operating system, which halts only because the user forces it to. If our
analogy is to have any merit, the field of nonlinear dynamical systems should not
concern itself with the specific properties of chaotic trajectories and aperiodic
output functions. Rather, their existence alone should denote a characterization
of the system, and nothing more.

On the other hand, should a periodic input produce a periodic output, that out-
put will have a discrete and therefore computational relationship to the input.
This implicit discreteness, in the face of the vast mathematical oddity of un-
countable infinities, should be the primary route to characterizing the behavior
of dynamical systems. This path to understanding nonlinear systems allows for
analogies to be made to mathematical structures like the computer, which are
not only intuitive, but have changed the very nature of human interaction as we
know it. An author by the name of Joseph Silverman published a book called
’The Arithmetic of Dynamical Systems.’ While the book is highly abstract,
and is concerned with the iterative dynamics of mathematical structures that
are far more intricate than periodic functions, he makes significant progress in
decomposing dynamical systems within the context of arithmetic. It is exactly
in this context that the formal and precise notion of computation is well-defined.

Further support for the fundamental relationship between dynamical systems
and arithmetic can be shown explicitly by accepting only that the notion of
periodicity (through the existence of limit cycles) is a fundamental requirement
for understanding dynamical systems. This can be shown by simple example. If
ρ1 and ρ2 are well-behaved periodic functions with rational (i.e. experimentally
measurable) periodicities, any point-to-point combination of ρ1 and ρ2 will have
a period that is the least-common multiple (LCM) of the individual periodicities
of ρ1 and ρ2.
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Here is the definition of the LCM function:

LCM(m,n) =
∏
k

p
min(mk,nk)
k ,

where m and n are described with the respect to their prime factorizations:

m =
∏
k

p mkk .

n =
∏
k

p nkk .

Considering that the algebra of periodic functions is explicitly defined in the
language of arithmetic, it is easy to see why the discretization present num-
ber theory, the language used to describe the relationships between the natural
numbers, will have to play a fundamental role in the theory of nonlinear dynam-
ical systems. In this light, we should should be exploiting the computational
aspects of such systems, rather than exploring mathematical oddities such as
chaos, which arise from mathematical attempts to describe sets that contain
more numbers than one is even capable of symbolizing, even when given access
to an infinite list of symbols (Leary, 2000)!

6.3 Implementation of the Periodic Decomposition

The periodic decomposition used for our analysis required three basical concepts:
the sinusoidal normalization, two applications of the Hilbert transform, and
band-pass filtering. Sinusoidal normalization aside, the other two components
can be explicity realized in terms of circuit components. As stated above, the
sinusoidal normalization was not even necessary for this analysis. Therefore,
the computations performed on the computer can be similarly performed using
a small number of well-precedented circuit components. This is a favorable
property of our analysis, and lends credibility to a physical implementation of
periodic computational devices. While we do not know if such devices would
have practical use (in an economic sense), the authors of this paper feel that it
is important for theory to be grounded in the substrate of reality, rather than
in pure abstraction alone.

6.4 Potential Sources of Error

The bulk of work for this study primarily concerned the development of a novel
analytical framework for approaching chaotic systems. Therefore, the potential
sources of error rest mainly within our gaps in formality, which were pointed out
in the various derivations above. The two major gaps; one in the derivation of
periodic complexity, and the other in the conjectured solution to the sinusoidal
normalization problem should have almost no impact on the results presented
in this paper.
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A very real source of potential error was in the methodology that we used to
sample our input space. To avoid redundant and uninteresting data, we sampled
areas that contained higher values of periodic complexity. So many sampling
procedures were tested and appended that we feel it is fair to say that the data
was approximately sampled randomly. Even so, this is not the case. Should
there be any significant source of error in our results, it would rest on the fact
that our data is biased towards sampling signals that are more periodically com-
plex. The data was compiled using well over twenty different iterative sampling
schemes, and the union of all such data is unlikely to fabricate the striking dis-
cretization that we observed between the inputs and the outputs. If anything,
our sampling scheme would be more likely to contribute to the irregularities
observed on the finer scale, as observed in Figure 10 and Figure 11.

A second source of potential error is the limitations of our data acquisition
system. The system outputs based on a discrete clock, and therefore certain
frequencies will be misrepresented. Again, this is most likely to contribute to
variations on a fine scale, and not at the level of discretization that we focused
on in our analysis. Finally, OpAmps are known to be chaotic unto themselves,
and there is no obvious way to describe the effect that they will have on the
system, given that we lack a model of what the system should be doing. Even
so, a complex system is a complex system, and the OpAmps merely served to
provide us with a complex system that happened to be more stable, at least on
average.

6.5 Conclusions

We describe a novel analysis that can be used to evaluate the computational
properties of qualitatively complex circuits such as the LD circuit. It is our
hope that a rigorous, computational understanding of nonlinear dynamics will
provide a theoretical backbone for relating structure and function in the mam-
malian nervous system. Intuitively, we believe that the nervous system performs
computations. Experimentally, we know that the nervous system is composed of
neurons, which are known to be highly nonlinear and dynamic systems. Perhaps
this work can serve as a first step in bridging the intuitive notion of computation
in the nervous system with the experimentally verified existence of nonlinear dy-
namics in the nervous system. Independent of that, we also hope that the work
serves as a refreshing departure from geometic analyses that rely on routes to
chaos and Hopf bifurcations etc... It is only a first step, and a small one. But
it is a promising one, nonetheless.
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